Electrochemical Behaviour of Mixed Tetrametallic Clusters with Pd_2M_2 and Pt_2M_2 Cores (M = Cr, Mo, W)

Rodolphe Jund,^a Paul Lemoine,^a Maurice Gross,^a Robert Bender,^b and Pierre Braunstein^b

^a Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, E.R.A. au C.N.R.S. n° 468, Université Louis Pasteur, 4 rue Blaise Pascal, F-67000 Strasbourg, France

^b Laboratoire de Chimie de Coordination, E.R.A. au C.N.R.S. n° 670, Université Louis Pasteur, 4 rue Blaise Pascal, F-67000 Strasbourg, France

Tetrametallic clusters $[M^1M^2(\mu^3-CO)(\mu^2-CO)_2(C_5H_5)(PPh_3)]_2$ (M¹ = Pd, Pt; M² = Cr, Mo, W) exhibit an unexpected irreversible two-electron reduction leading to the rupture of the metallic core into identified fragments; in contrast, the first two oxidation waves of the clusters indicate that oxidation occurs in one-electron steps.

Several electrochemical studies have been carried out on homonuclear transition metal clusters but little is known about the electrochemistry of heteronuclear metal clusters.^{1,2} As part of our studies on transition metal cluster electrochemistry,¹ we have examined the electrochemical properties of a new series of heterometallic clusters3 of general formula $[M^{1}M^{2}(\mu^{3}-CO)(\mu^{2}-CO)_{2}(\eta^{5}-C_{5}H_{5})(PPh_{3})]_{2}(M^{1}=Pd, Pt; M^{2}=$ Cr, Mo, W) (1) which have recently been used as precursors of heterogeneous catalysts.⁴ These compounds exhibit a planar metallic core in the solid state and remain unaltered in solution; this has been shown by i.r. and n.m.r. spectroscopy. The formal oxidation states of the metals have been described as +1 for M¹ and zero for M².³ We now report the observation of a two-electron reduction process which is in contrast with the multiple one-electron reduction steps generally observed in clusters.5

The present clusters exhibit a single, well defined cathodic wave on a rotating platinum disc electrode (2000 r.p.m.; area 3.14 mm²; $E_{1/2}$ in Table 1). Passivation of the Pt electrode was observed both in *N*,*N*-dimethylformamide (DMF) + 0.1M [(C₆H₁₃)₄N]ClO₄ and in CH₂Cl₂ + (Et₄N)ClO₄: the limiting currents and the number *n* of electrons exchanged per mole of

cluster (n = 1.4) were smaller than the calculated values for a two-electron process. After controlled-potential electrolysis of

the Pd_2W_2 cluster, a metallic deposit on the Pt electrode was identified as Pd by scanning electron microscopy. Typical cyclic voltammetric curves are given in Figure 1.

Figure 1. Cyclic voltammetry of $[PdW(CO)_3(C_5H_5)(PPh_3)]_2 10^{-4} M$ in DMF + 0.1 M Et₄NClO₄; Pt electrode, potential scan rate 0.5 V s⁻¹. Full line: without PPh₃; dashed line: in the presence of an excess of PPh₃ (3.74 × 10⁻³ M). An asterisk denotes the start of the scan.

One of the reoxidation peaks [at ca. 0 V vs. saturated calomel electrode (S.C.E.)] was identified as showing the oxidation of the anion $[M^2(CO)_3(C_5H_5)]^-$ which was also characterized by i.r. spectroscopy on totally reduced solutions.¹ The presence of a Pd^o deposit on the electrode led us to infer that a second cluster-derived fragment might involve zerovalent Pd or Pt species which could not, however, be isolated or identified in solution. Addition to the electrolyte of an excess of PPh₃, which is electroinactive in reduction, allowed us to characterize, after exhaustive reduction, the complexes $M^1(PPh_3)_4$ by comparison with authentic samples. In addition, coulometric reduction of the clusters carried out with an excess of PPh₃ gave $n = 1.9 \pm 0.1$. In DMF, Pt(PPh₃)₄ and Pd(PPh₃)₄ are oxidized at $E_{1/2} = +0.03$ V vs. S.C.E. and $E_{1/2} = 0.05$ V vs. S.C.E., respectively (Figure 1). The irreversible twoelectron[†] reduction of the studied clusters thus leads to their fragmentation (Scheme 1). The two Pt^I or Pd^I centres are formally electroreduced to Ptº or Pdº in one step. To our knowledge, this is the first example reported in which two metallic centres are simultaneously reduced in a single process within the electrochemical time scale.

Oxidation occurs in several steps, of which only the first two led to well defined signals (Figure 1). The clusters first undergo a one-electron oxidation step $(E_{1/2} \text{ in Table 1})$. In $CH_2Cl_2 +$ $0.1 \text{ M} [(C_6H_{13})_4\text{N}]ClO_4$ the peak current ratio i_{pc}/i_{pa} from cyclic voltammetry experiments increases from 0.8 to 1.0 when the potential scan rate varies from 0.01 to 1 V s⁻¹ whereas in DMF + 0.1M (Et₄N)ClO₄ i_{pc}/i_{pa} remains smaller than unity, even at 1 V s⁻¹, indicating the presence of chemical step(s) following the electron transfer. A second, ill defined oneelectron oxidation step is observed at more anodic potentials (Table 1, Figure 1). This irreversible step is solvent- and

$$2[M^{2}(CO)_{3}(C_{5}H_{5})]^{-} + 2[M^{1}(PPh_{3})_{4}]$$

$$i$$

$$[M^{1}M^{2}(CO)_{3}(C_{5}H_{5})(PPh_{3})]_{2} + 2e \xrightarrow{i} [M^{1}M^{2}(CO)_{3}(C_{5}H_{5})-$$

$$(PPh_{3})]_{2}^{2} -$$

$$\downarrow$$
Unidentified M¹ species + 2[M^{2}(CO)_{3}(C_{5}H_{5})]^{-}

M¹ metal (oxid. state zero)

Scheme 1. Reduction of the mixed-metal clusters. i, Electrochemical step; ii, excess of PPh_3 .

† E.s.r. experiments (no radical), as well as the geometry of the curves obtained in differential and normal pulse polarography (current log transforms) and in cyclic voltammetry $(E_{\rm p} - E_{\rm p/2})$ also indicate that the reduction is a two-electron step within the time scale of the electrochemical experiments.

Table 1.	Electrochemical	results on	$[M^{1}M^{2}(\mu^{3}-CC)]$	$(\mu^2 - CO)_2$	$(C_5H_5)(PPh_3)]_2.$
----------	-----------------	------------	----------------------------	------------------	-----------------------

				E_p (anod.) First step $E_{1/2}$ (anod.) E_n (anod.) E_n (anod.)					
M1	M ²	$E_{1/2}$ (cath.)	E_p (cath.)	First step	Direct scan	Reverse scan	Second step	Second step	
Pd	Cr	-0.84	-0.85	+0.26	+0.30	+0.23	+1.15	+1.04	
Pd	Mo	-0.99	-1.02	+0.29	+0.33	+0.26	+0.73	+0.73	
Pd	W	-1.07	-1.09	+0.18	+0.22	+0.15	+0.66	+0.65	
Pt	Cr	-1.17	-1.18	+0.21	+0.25	+0.18	+0.95	+0.98	
Pt	Мо	-1.33	-1.34	+0.23	+0.27	+0.20	+0.61	+0.73	
Pt	W	-1.42	-1.44	+0.08	+0.11	+0.04	+0.44	+0.40	

^a $E_{1/2}$ and E_p values in V vs. S.C.E.; E_p at 0.1 V s⁻¹ for cathodic and anodic reactions. Conc. range = $(0.90-2.02) \times 10^{-4}$ M. Pt electrode. Cathodic reactions in DMF + 0.1 M Et₄NClO₄; anodic reactions in CH₂Cl₂ + 0.1 M (C₆H₁₃)₄NClO₄.

Scheme 2. Oxidation of the mixed-metal clusters. i, Electro-

chemical step.

[PPh₃]-dependent (Figure 1). On the basis of these results, the oxidation process in CH_2Cl_2 , shown in Scheme 2, may be proposed.

After exhaustive electrolysis of the Pd_2Mo_2 cluster in DMF + 0.1 M [(C_6H_{13})₄N]ClO₄ at potentials corresponding to the second oxidation step, two new cathodic signals were detected at *ca*. -0.45 V *vs*. S.C.E. and -0.95 V *vs*. S.C.E. These are identical to those obtained with the oxidation products of [M²(CO)₃(C_5H_5)]₂ at +1.3 V *vs*. S.C.E. The cathodic signal at -0.45 V *vs*. S.C.E. was identified as the reduction of [Mo(CO)₃ (C_5H_5) (DMF)]⁺ by comparison with an authentic sample.

The above results reveal that electrochemical oxidation of the clusters affects, as expected, the electron-rich M^2 centres, whereas electrochemical reduction involves the M^1 centres. Also, the results gathered in Table 1 clearly illustrate that the reduction potentials are cathodically shifted from Cr to W and from Pd to Pt, and thus parallel the basicity of the metals. On the other hand, the $M_2^1 Cr_2$ and $M_2^1 Mo_2$ clusters have very similar oxidation potentials, while $M_2^1 W_2$ clusters are easier to oxidize.

Previous studies on metal-metal bonded carbonyl complexes have revealed metal-metal bond breaking induced by electroreduction.⁶ This was explained by the involvement of a LUMO level with antibonding metallic character. It is therefore reasonable to suggest that an antibonding orbital of M^1-M^1 character is involved in the reduction of these clusters. Moreover, this explanation is fully consistent with the formal description of an oxidation state of +1 for M^1 and zero for M^2 centres.³ In contrast, the HOMO level involved in the oxidation steps is probably of M^2 character.

Received, 1st October 1982; Com. 1161

References

- P. Lemoine, A. Giraudeau, M. Gross, and P. Braunstein, J. Chem. Soc., Chem. Commun., 1980, 76; J. Organomet. Chem., 1980, 202, 455; J. Chem. Soc., Dalton Trans., 1981, 2059; P. Lemoine, Coord. Chem. Rev., 1982, 47, 55.
- L. R. Byers, V. A. Uchtman, and L. F. Dahl, J. Am. Chem. Soc., 1981, 103, 1942; A. D. Young, Inorg. Chem., 1981, 20, 2049;
 B. M. Peake, P. H. Rieger, B. H. Robinson, and J. Simpson, ibid., p. 2540; T. Madach and H. Vahrenkamp, Chem. Ber., 1981, 114, 505.
- R. Bender, P. Braunstein, Y. Dusausoy, and J. Protas, Angew. Chem., Int. Ed Engl., 1978, 17, 596; J. Organomet. Chem., 1979, 172, C51; R. Bender, P. Braunstein, J. M. Jud, and Y. Dusausoy, Inorg. Chem., submitted for publication.
- 4 P. Braunstein, R. Bender, and J. Kervennal, *Organometallics*, 1982, 1, 1236.
- 5 M. S. Paquette and L. F. Dahl, J. Am. Chem. Soc., 1980, 102, 6622; J. A. Ferguson and T. J. Meyer, *ibid.*, 1972, 94, 3409; Trinh-Toan, B. K. Teo, J. A. Ferguson, T. J. Meyer, and L. F. Dahl, *ibid.*, 1977, 99, 408.
- 6 C. J. Pickett and D. Pletcher, J. Chem. Soc., Dalton Trans., 1975, 879.